VTのアブレーションと マッピングシステムの融合

茨城県立中央病院

服部正幸

筑波大学付属病院

小松雄樹

はじめに

器質的心疾患に合併する心室頻拍 (ventricular tachycardia: VT) のアブレー ションにおいては、頻拍を持続させるメ カニズムを明確にし、適切なアブレー ション戦略を建てることが求められる。 従来のアブレーション治療においては、 entrainment mappingによる回路の推定 に重きが置かれていたが、3次元マッピン グシステムの発展に伴い、activation mappingによる頻拍回路の同定やpace mapping/substrate mappingによる洞調 律中の不整脈基質推定の精度が飛躍的に 向上した。本稿では現代の3次元マッピン グシステムを用いて行われるVTアブレー ションについて解説する。

Activation mapping

器質的心疾患を有する心室頻拍の8割 はマクロリエントリーを機序とし、そのモ デルは1993年にStevensonらにより提唱 され、今でも広く受け入れられている1)。 すなわち、VT中はその拡張期にentrance →isthmus→exitの順に瘢痕組織内に残存 した病的心筋内を興奮が伝播し、exitから 生じた興奮が頻拍収縮期に外側回路 (outer loop) ないし瘢痕組織の内側回路 (inner loop) を介して再度entranceに入り こむことで頻拍が持続する。しかしなが ら、近年の多極電極カテーテルの開発・ 臨床応用に伴い短時間で数千~数万のポ イントが取得できるようになり、詳細な興 奮伝播様式を描出することができるよう になると、実臨床ではStevensonらの提唱 するシンプルな回路ばかりではないこと がわかってきた。一般にVTのexitは、瘢 痕部組織の辺縁領域に存在し、周囲の健 常心筋を興奮させることでVT中のQRS 波形が形成されるとされるが、scar内部 でVT回路の完結するintra-scar VTでは、 entrainment pacingで同定されるexit部位 が、activation mappingにおけるexitから は距離が離れていることがある2)。また、 1つのVT同路に、複数のentrance/exitを 有し、頻拍が持続するものもある3)。 Activation mappingから得られたデータ により、VTの機序に関する報告も多数な されており、VT中の局所心筋の伝導速度 は、isthmusやdead endと比較すると entrance/exitでより低下している³⁾、VT中 のisthmusの局所心筋電位の波高は低い が、同一部位の洞調律中やペーシング中 の波高と比較すると高い3)、ヒトにおける isthmusの大きさは平均17mm×10mm程 度4)、VTの頻拍周期は主にouter loopの伝 導速度により規定される⁵⁾、などといった 報告がされている。

Pace mapping

Pace mappingはVT回路、とりわけexit やexit近傍のisthmusの推定に有用な手法 である。一方、entrance近傍のマッチング スコアは低いとされる。これはexitやexit 近傍のisthmusで行った刺激はexit方向へ と興奮が伝播しVT中の波形と類似する が、entrance近傍の刺激はVT中の興奮順 序とは逆行する健常心筋も興奮させるた めである⁶⁾。ペーシングからORS波形のオ ンセットまでに伝導遅延を伴う (stimulus to QRS ≥ 40ms) 場合、リエントリー回路 の焼灼ターゲットとなるとされる。

Activation mapping同様、pace mapping においても、3次元回路の推定が可能であ る。CARTO システム (Biosense Webster 社)を用いると、算出したpace mapping スコア (PASO™ Module) を投影した マップ=correlationスコアマップが作 成される。Pace mappingスコアが≥90 Texcellent correlation, ≤38% Tpoor correlationとされる。1つのマップ表面 で完結する2次元の回路を有する場合、 exitとentranceで大きくスコアが変化す ることから、excellent correlationとpoor correlationが近接し、マップ上でabrupt changeが認められる⁷⁾。3次元回路を有 するVTになると、回路のどの部分が表層 に現れているかによりマップの様相が変

わってくる。心筋深層で回路が完結する 場合には、心内膜側/心外膜側いずれ においてもexcellent correlation/poor correlationは記録されない(図1)。

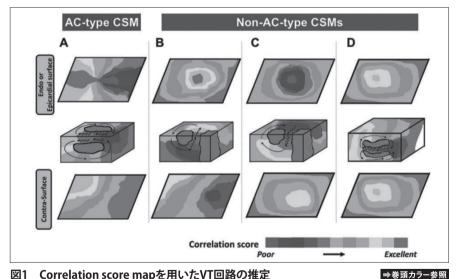
Substrate mapping

Substrate mappingはVTを誘発する前 に、あるいはVTを誘発することなく、不整 脈基質を特定することを目的とする。主 に電位を指標としたマップ (voltage mapping) と局所伝導速度を反映した マップ (functional substrate mapping) に 大別される。

1. Voltage mapping

Voltage mappingは、双極電極のpeakto-peakの波高をもとに低電位領域を描出 する手法が一般的である。双極電極で記 録される電位波高が低い領域では、電位 の断片化、分裂、遅発性電位など異常電 位を認め、これらは通常健常心筋領域に は認められない。Marchlinskiらは4mm tipのマッピングカテーテルを用いた検証 で、1.5mVを低電位領域、0.5mVを瘢痕組 織と定義した8)。同カットオフでは現在で も一般に受け入れられる指標であるが、 以下の問題が存在する。1) 再灌流療法に より梗塞巣にviableな心筋が多数残存す る陳旧性心筋梗塞や非虚血性心筋症で は、傷害心筋に介在する健常心筋のfar field potentialにより、1.5mVのカットオフ 値では低電位領域が見逃される可能性が ある。2) 記録される双極電極波高は、マッ ピングを行うカテーテルの電極の大きさ、 間隔に強く影響される。電極サイズが小 さいほど、また電極間隔が大きいほど異 常電位は大きく記録される⁹⁾。我々の施設 では、多極電極カテーテルを用いて

voltage mappingを行う際、低電位領域の カットオフを暫定1.0mVと設定し、徐々に その値を下げていくことで、より限局する 低電位領域を描出するようにしている。


双極電極はその特性上far field電位を 除外し、より近接する局所の波形を記録 できるが、心筋中層や心外膜側に不整脈 基質を有する場合、心内膜側からの substrateの評価は困難となる。単極電極 はfar field potentialの混在が強まる分、記 録可能な範囲が広い。Hutchinsonrらはこ の性質を利用し、左室心内膜側では健常 組織(双極電位波高>1.5mV)と記録され る部位で、単極電極波高が8.27mV以下の 場合、心外膜側の病変が示唆されること を報告した¹⁰⁾。また、同時期にPolinらは、 右室自由壁における心外膜側病変を示唆 する短極電極波高カットオフは5.5mV以 下であることを示した11)。

低電位領域の描出は、可視的に異常部

位検出に優れているが、全ての低電位領 域がVTの基質となるわけではなく、VT 回路の同定において感度は優れるが特異 度は低い¹²⁾。Pace mappingや後述の functional substrate mappingと併用する ことで不整脈基質の推定精度が上がると 考えられる。

2, Functional substrate mapping

洞調律中に認める不整脈基質として、 前述のvoltage mappingを用いた低電位 領域の検出の他に、局所電位の性状を評 価する手法が着目されてきた。遅延電位 (late potentials, LP) や心室異常電位 (local abnormal ventricular activities. LAVA) がその筆頭に挙がるが、残念なが らこれらは取得するポイントの数やカ テーテルの種類、マッピング作成時の興 奮伝播の方向に大きく影響される上に、 VT回路を推定する上でこれら局所電位単

図1 Correlation score mapを用いたVT回路の推定

心内膜側のみ完結するVT回路では、excellent correlationとpoor correlationが隣接し、 correlation score mapで急激な色調変化=abrupt changeが生じる(A)。心内膜側にexitの み記録されるもの(B)やentranceのみ記録されるもの(C)、心筋中層で回路が完結するもの (D) では、abrupt changeは認められない。AC: abrupt change, CSM: correlation score

(Combined endo- and epicardial pace-mapping to localize ventricular tachycardia isthmus in ischaemic and non-ischaemic cardiomyopathy. Europace. 2022 Apr 5;24(4):587-597. より転用)